Machine learning platforms are not the wave of the future. It's happening now. Developers need to know how and when to harness their power. Working within the ML landscape while using the right tools like Filestack can make it easier for developers to create a productive algorithm that taps into its power. The following machine learning platforms and tools — listed in no certain order — are available now as resources to seamlessly integrate the power of ML into daily tasks.
1. H2O
H2O was designed for the Python, R, and Java programming languages by H2O.ai. By using these familiar languages, this open source software makes it easy for developers to apply both predictive analytics and machine learning to a variety of situations. Available on Mac, Windows, and Linux operating systems, H2O provides developers with the tools they need to analyze data sets in the Apache Hadoop file systems as well as those in the cloud.
from DZone.com Feed https://ift.tt/2ICIE6R
No comments:
Post a Comment